Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(1): 013104, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36725556

RESUMO

An x-ray Fresnel diffractive radiography platform was designed for use at the National Ignition Facility. It will enable measurements of micron-scale changes in the density gradients across an interface between isochorically heated warm dense matter materials, the evolution of which is driven primarily through thermal conductivity and mutual diffusion. We use 4.75 keV Ti K-shell x-ray emission to heat a 1000 µm diameter plastic cylinder, with a central 30 µm diameter channel filled with liquid D2, up to 8 eV. This leads to a cylindrical implosion of the liquid D2 column, compressing it to ∼2.3 g/cm3. After pressure equilibration, the location of the D2/plastic interface remains steady for several nanoseconds, which enables us to track density gradient changes across the material interface with high precision. For radiography, we use Cu He-α x rays at 8.3 keV. Using a slit aperture of only 1 µm width increases the spatial coherence of the source, giving rise to significant diffraction features in the radiography signal, in addition to the refraction enhancement, which further increases its sensitivity to density scale length changes at the D2/plastic interface.

2.
Rev Sci Instrum ; 93(9): 093502, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182497

RESUMO

Image formation by Fresnel diffraction utilizes both absorption and phase-contrast to measure electron density profiles. The low spatial and spectral coherence requirements allow the technique to be performed with a laser-produced x-ray source coupled with a narrow slit. This makes it an excellent candidate for probing interfaces between materials at extreme conditions, which can only be generated at large-scale laser or pulsed power facilities. Here, we present the results from a proof-of-principle experiment demonstrating an effective ∼2 µm laser-generated source at the OMEGA Laser Facility. This was achieved using slits of 1 × 30 µm2 and 2 × 40 µm2 geometry, which were milled into 30 µm thick Ta plates. Combining these slits with a vanadium He-like 5.2 keV source created a 1D imaging system capable of micrometer-scale resolution. The principal obstacles to achieving an effective 1 µm source are the slit tilt and taper-where the use of a tapered slit is necessary to increase the alignment tolerance. We demonstrate an effective source size by imaging a 2 ± 0.2 µm radius tungsten wire.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...